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ABSTRACT

Radio-frequency interference (RFI) has negatively impacted
scientific measurements of passive remote sensing satellites.
This has been observed in the L-band radiometers Soil Mois-
ture and Ocean Salinity (SMOS), Aquarius and more recently,
Soil Moisture Active Passive (SMAP). RFI has also been ob-
served at higher frequencies such as K band. Improvements in
technology have allowed wider bandwidth digital back ends
for passive microwave radiometry. A complex signal kurtosis
radio frequency interference detector was developed to help
identify corrupted measurements. This work explores the use
of Independent Component Analysis (ICA) as a blind source
separation (BSS) technique to pre-process radiometric signals
for use with the previously developed real and complex signal
kurtosis detectors.

Index Terms— Interference, Circularity, Complex Ran-
dom Process, Radiometer, Digital Receiver, Kurtosis, Com-
plex Kurtosis, Independent Component Analysis

1. INTRODUCTION

As the radio spectrum becomes saturated, microwave radiom-
etry remote sensing instruments must deal with both shared
spectrum as well unintentionally contaminated spectrum. Re-
cent advances in high speed radio frequency (RF) electron-
ics has enabled wideband remote sensing techniques while
simultaneously allowing for a more crowded spectrum. To
help identify a corrupted measurement, a real time radio fre-
quency interference (RFI) detection algorithm can be used in
a radiometer digital back end such as the one used on the ra-
diometer for the Soil Moisture Active Passive (SMAP) mis-
sion [1].

While higher order test statistics prove effective at detect-
ing pulsed interference [2], it is more difficult to detect con-
tinuous interference and complex modulations using the same
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statistical methods. To this end additional test statistics in pre-
vious work [3, 4, 5] were evaluated. This work now applies
Independent Component Analysis (ICA) as a pre-processor
for RFI detection.

2. HYPOTHESIS TESTING

With the goal of developing new RFI detection algorithms and
evaluating their performance, hypothesis testing is used. The
signal is modeled under null and alternate hypothesis. For the
null hypothesis, H0 , it is assumed that the radiometer only
observes thermal noise. Under the alternate hypothesis, H1 ,
the radiometer observes both thermal noise as well as a source
of interference.

H0 : Thermal Noise Only

H1 : Thermal Noise and Interference

The primary goal of this work is to increase the ability to dif-
ferentiate betweenH0 andH1. A secondary goal of this work
is to obtain the ability to determine what the measurement
would have been if the interference did contaminate the ob-
servation.

2.1. Signal Model

In the context of microwave radiometry remote sensing, it is
assumed that the the receiver consists of a single dual polar-
ization antenna. This gives instantaneous access to observa-
tions of the horizontal and vertical polarizations, xH(t) and
xV (t). The geophysical thermal noise is considered to be a
Gaussian random process, with the horizontal (1) and vertical
(2) polarizations being uncorrelated and independent (3).

WH(t) ∼ N (0, σ2
n) (1)

WV (t) ∼ N (0, σ2
n) (2)
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WH(t) ⊥WV (t) (3)

To accurately capture the nature of satellite communica-
tions it is assumed that the interfering signal, r(t) is circularly
polarized, resulting in a 90 degree phase shift between the two
channels, rH(t) and rV (t) as shown in equation (4). The vari-
ance of the interfering signal is denoted by σ2

r , and assumed
to be equal in both polarizations.

rH(t) = rV (t)e
−jπ
2 (4)

This leads us to a more accurate definition of the two hy-
pothesis cases shown in equation (5).

H0 :

{
xH(t) =WH(t)

xV (t) =WV (t)

H1 :

{
xH(t) =WH(t) + rH(t)

xV (t) =WV (t) + rV (t)
(5)

The interference to noise ratio (INR) is defined as the ratio
between the interference variance, σ2

r , and noise variance, σ2
n,

as expressed in decibels by equation (6).

INRdB = 10 log10
σ2
r

σ2
n

(6)

By varying the INR and running Monte-Carlo simula-
tions, the efficacy of different test statistics and detection
schemes can be evaluated.

2.2. Real Signal Kurtosis

Real signal kurtosis (RSK) [2] is used as a test statistic that
is well suited toward both real and complex signals. Given a
complex baseband signal z(n) = I(n) + jQ(n), the fourth
standardized moment is computed independently for both the
real and imaginary vectors, I and Q as was used on SMAP
[1].

RSKI =
E
[
(I − E[I])4

]
E [(I − E[I])2]

− 3 (7)

RSKQ =
E
[
(Q− E[Q])4

]
E [(Q− E[Q])2]

− 3 (8)

The test statistic, RSK, is then defined in equation (9) as

RSK =
|RSKI |+ |RSKQ|

2
(9)

As the RSK test statistic deviates from zero, signal is con-
sidered to be less Gaussian and more likely to contain inter-
ference.

2.3. Complex Signal Kurtosis

Given a complex baseband signal z(n) = I(n) + jQ(n) ,
moments α`,m are defined in equation (10).

α`,m = E
[
(z − E[z])`(z − E[z])∗m

]
, `,m ∈ N≥0 (10)

With σ2 = α1,1 , Standardized moments %`,m can be found
as shown in equation (11).

%`,m =
α`,m

σ`+m
, (11)

This leads to the CSK (Complex Signal Kurtosis) RFI Test
statistic [3, 4, 5] as shown in equation (12).

CSK =
%2,2 − 2− |%2,0|2

1 + 1
2 |%2,0|

2 (12)

Similarly to the RSK test statistic, as CSK deviates from
zero it is considered to be more likely to contain interference.

3. INDEPENDENT COMPONENT ANALYSIS
PRE-PROCESSOR

In an effort to both identify interference as well as remove
it from measurements, the blind source separation (BSS)
method ICA was used in this work as a pre-processing algo-
rithm.

3.1. Independent Component Analysis

ICA assumes that originating sampled sources, s(n) =
(s1(n), . . . , sM (n))T , are mixed by an instantaneous con-
stant mixing matrix A, into an observable x(n) = (x1(n),
. . . , xM (n))T as shown in (13). The use of a de-mixing ma-
trix W is used to invert the mixing process and retrieve the
original signal. Since access to true values of s and W are
unavailable, they are estimated as shown in (14) by iteratively
modifying Ŵ and checking if ŝ meets a separation criteria.
This iterative process is roughly illustrated in Figure 1.

x(n) = As(n) (13)

ŝ = Ŵx (14)

3.2. ICA Preprocessor Implementation

ICA was used as a pre-processor to the existing test statistics
RSK (9) and CSK (12). The separation of the observed signal
into its underlying components is an attempt to increase the
sensitivity of the detector. Test statistics are then taken on the
estimated original signals, ŝ instead of the observed signals in
x as seen for the RSK case in Figure 2.



Fig. 1. Flow chart showing top level view of ICA.

Fig. 2. Block diagram depicting how the output of ICA is
used as pre-processed data for RSK.

3.3. ICA RFI Excision

In addition to RFI detection, once identified one could use
the existing information to determine what would have been
observed had the interference not been present. By replacing
an entire row in ŝ with zeros and coming back through the
inverse of Ŵ. The new filtered set of estimated signals with
zeroed out interference components is denoted by s̃. Denoting
the inverse of Ŵ as Â, an estimated RFI free observation x̃
is obtained as shown in (15).

x̃ = Âs̃ (15)

If the only desired parameter of x̃ is the variance of each vec-
tor, x̃ need not be computed. The variance of each vector in ŝ
is normalized to one and the variances of x̃ lie in the non RFI
associated coefficients of the Â matrix.

3.4. ICA Algorithms Used

An assortment of different ICA algorithms were tested as enu-
merated below. The algorithms differ in their use of real and
complex valued values, as well as the sources of diversity and
statistical assumptions used to identify the de-mixing matrix.

• Fast ICA (FASTICA) [6, 7]

• Robust ICA (ROBUSTICA) [8, 9]

• Non Circular Complex Fast ICA (NCCFASTICA) [10,
11]

• Entropy Rate Bound Minimization (ERBM) [12, 11]

• Complex Quadrature Amplitude Modulation (CQAM-
SYM) [13, 11]

• Complex Entropy Rate Bound Minimization (CERBM)
[14, 11]

4. RESULTS

Monte-Carlo simulations were run at varying values of INR to
evaluate the performance of the different ICA algorithm and
detector combinations. For every simulation, 9000 samples
were collected before performing any ICA pre-processing or
computing test statistics. A receiver operating characteristic
(ROC) curve was computed for every set of parameters, and
the area under the curve (AUC) was used as figure of merit.
As AUC approaches 1 the detector is performing at its best,
while as it approaches 0.5 the detector is not able to differ-
entiate between the two cases. By looking at the INR when
the AUC crosses 0.75, a single numerical performance value
with which to compare multiple detection algorithms is ob-
tained. The simulations were run using pulsed continuous
wave (PCW), continuous wave (CW), and quadrature phase
shift keying (QPSK) forms of interference.

4.1. Results for PCW Modulation

When differentiating between the two hypothesis while con-
sidering pulsed continuous wave modulation the combination
of robust ICA with RSK performed best as shown in Figure
3.

4.2. Results for CW Modulation

While using a continuous wave modulation the CERBM al-
gorithm provides the largest gain in interference detectabil-
ity as shown in Figure 4. This may be due to the fact that
CERBM uses sample to sample dependence in addition to
higher order statistics when finding the de-mixing matrix. A
non-pulsed signal should provide consistent sample to sample
dependence across the entire duration of the observation.

4.3. Results for QPSK Modulation

While using a wideband (QPSK) modulation the CERBM al-
gorithm once again provides the largest gain in interference
detectability as shown in Figure 5. The QPSK signal evalu-
ated here occupies 15% of the digital bandwidth, and is con-
volved with a Root-raised-cosine (RRC) filter similar to those
used for single carrier satellite communications.



Fig. 3. Detector performance when using a pulsed continuous
wave interferer.

Fig. 4. Detector performance when using a continuous wave
interferer.

Fig. 5. Detector performance when using a pulsed wideband
(QPSK) interferer.

5. CONCLUSIONS

From the results it is clear that some improvement can be
made when using ICA as a pre-processor for RSK and CSK
test statistics while trying to differentiate between clean ther-
mal noise compared to an RFI corrupted observation. The
performance boost in this work is limited to an increase of RFI
detectability at about 2dB INR. This is likely due to the under
determined nature of the available observations and mixing
process. While the 2dB boost in detectable RFI levels may
be beneficial, a significant improvement is still needed to mit-
igate the effects of continuous and complex interference on
microwave radiometry instruments.

It would not be surprising to see a large gain in perfor-
mance by increasing the number of observations, but this
work is focused on the single dual polarization antenna case
that is most applicable for remote sensing via space born
satellite microwave radiometry.

To develop a multiple antenna system and increase the
number of observations, the assumption of a instantaneous
mixing matrix implies that the observations must be synchro-
nized and be observing the same terrestrial footprint. This
approach could also be used for RFI mitigation purposes with
other system architectures where a larger number of observa-
tions are present.
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